

CERTOTTICA

Istituto Italiano per la Certificazione dei Prodotti Ottici Scarl Loc. Villanova Zona Industriale - 32013 LONGARONE BL Tel.: +39 0437 573157 - TeleFAX: +39 0437 573131 **Web:** www.certottica.it **E-mail:** info@certottica.it

Page 1 / 8 Rep. No. 103995

Organismo Notificato UE n. 0530 - Autorizzato dal Ministero dello Sviluppo Economico e dal Ministero del Lavoro e della Previdenza Sociale con D.L. 12/12/07.

Client: BOLLE' PROTECTION Address: 95 rue Louis Guérin - 69 100 VILLEURBANNE FRANCE Article: Spectacle Model: **RANGER Red mirror lens** Job no.: C101041 Report no .: 103995 **Receiving Date:** 26/10/2010 Date of Test Begin: 12/11/2010 Date of Test End: 18/11/2010 **Issuing Date:** 19/11/2010 Standard Applied: EN 166:2001 - Personal eye-protection - Specifications

TEST REPORT

Note 1: This Test Report is valid exclusively for the specimens utilized for tests and any modification shall be solely performed with the issuing of a new test report.

Note 2: The partial reproduction of this Test Report is permitted against written authorization by Certottica.

Note 3: The Test Report in digital format and the relevant attached file of the digital signatures are official documents. The validity of this Test Report can be checked at **http://www.certottica.org**.

Note 4: The tests were performed on specimens that sampled the customer.

Optical Tests

Quality of material and surface

Clause 7.1.3

Requirements

Except for a marginal area 5 mm wide, oculars shall be free from any significant defects likely to impair vision in use.

Outcomes

Sample	Defects	Test
103995 15dx	—	Pass
103995 15sx	—	Pass
103995 16dx	—	Pass
103995 16sx	—	Pass
103995 17dx		Pass
103995 17sx		Pass

Diffusion of light

Clause 7.1.2.3

Requirements

The measurement of the reduced luminance factor is performed following the method stated in the EN167 Clause 4.2.1 (basic method). The reduced luminance factor shall be not superior than $1 \ cd \ m^{-2} \ lx^{-1}$ for welding filters, 0.75 $cd \ m^{-2} \ lx^{-1}$ for oculars used in eye-protectors against high speed particles, 0.5 $cd \ m^{-2} \ lx^{-1}$ for all other oculars.

Outcomes

Sample	$\ell^* (cd m^{-2} lx^{-1}$)	Test
103995 4dx	0.29	Pass
103995 4sx	0.32	Pass
103995 5dx	0.27	Pass
103995 5sx	0.21	Pass
103995 6dx	0.19	Pass
103995 6sx	0.19	Pass

Trasmittance

Clause 7.1.2.2

Oculars with filtering action (filters) and housings for oculars with filtering action

Clauses 7.1.2.2.2, 7.2.1

Requirements

The trasmittance requirements for filtering oculars are specified in the EN 169 - *Welding filters*, EN 170 - *Ultraviolet filters*, EN 171 - *Infrared filters*, EN 172 - *Sunglare filters for industrial use* and EN 379, *Welding filters with switchable luminous transmittance*. Goggles and face-shields mounting filtering oculars shall provide al least the same level of protection as given by the oculars.

Permissible transmittance and scale numbers

EN172 - Clause 4

Measurement Method of the Spectral Transmittance

The spectral transmittance is measured at least from 280 to 780 nm and at no more than from 280 to 2000 nm, always with the step of 1 nm through a spectrophotometer using a spectral band width not superior to 2 nm in the ultraviolet and in the visible and not over 20 nm in the infrared.

Sample Labeling and Measurement Point

The sample labeling and the measurement points are explained as following.

The measurement point on a filter is the standard's reference point if not otherwise specified. The reference point is the visual point or the geometric point if the first is unknown.

The spectral transmittance measurement points are labeled by meean a serie of strings.

The strings sx e dx identified the left and the right oculars reference point respectively.

The mounted gradient filters generally are measured in the reference point and in the points at the most 15 mm up and below the reference point and along the two parallels to the line through the right and the left reference points of the protective equipment.

In the case of unmounted singular filter the measurement are performed along the gradient direction.

The two measurement points apart the reference point are labeled s and c.

Photochromic filters can to be measured at different conditions of temperature, T (unit Celsius degree), and illumination, L (unit lux), and the labeling is perfomed with a suffix.

Luminous Transmittance

EN172 - Clause 4.1

Requirements

The superior and inferior limits of Tv relative to a filter shade number are showed in the Tables 1 and 2 of the standard.

Outcomes

The measument values of Tv, expressed in percent, and the relative test are:

Sample	Tv (%)	Test
103995 4sx	10.9	Pass
103995 4dx	11.8	Pass
103995 5sx	10.9	Pass
103995 5dx	11.7	Pass
103995 6sx	10.8	Pass
103995 6dx	11.5	Pass

Ultraviolet and Visible Spectral Transmittance

EN172 - Clause 4.1

Requirements

The superior values of the spectral transmittance , $T(\lambda)$, from 280 to 315 nm, here named Tmax280_315, and of the transmittance , $T(\lambda)$, from 315 to 350 nm, here named Tmax315_350, must be conform to the requirements in the Tabb. 1 and 2 of the standard. The mean value of $T(\lambda)$ from 315 to 380 nm, here named Tmean315_380, must be conform to the requirements in the Tabb. 1 and 2 of the standard.

The minimum value of $T(\lambda)$ from 500 to 650 nm, here named Tmin500_600, must be not inferior to 1/5 of the T_V .

Certottica Scarl

Rep. no.: 103995

Outcomes

Measurement values and the result of the tests are:

Sample	Tmax280_315 (Tv)	Test	Tmax315_350 (Tv)	Test	Tmean315_380 (Tv)	Test
103995 4sx	0.00	Pass	0.00	Pass	0.00	Pass
103995 4dx	0.00	Pass	0.00	Pass	0.00	Pass
103995 5sx	0.00	Pass	0.00	Pass	0.00	Pass
103995 5dx	0.00	Pass	0.00	Pass	0.00	Pass
103995 6sx	0.00	Pass	0.00	Pass	0.00	Pass
103995 6dx	0.00	Pass	0.00	Pass	0.00	Pass

Recognition of signal lights

EN172 - Clause 4.2

Requirements

Nota: these specifications are applicable to filters with shade number from 1 to 3,1.

The Q-factor of the semaphoric signals red, yellow, green and blue, here named respectively Qred, Qyellow, Qgreen e Qblue, must be not inferior to 4/5.

Outcomes

The measurements values of Qred, Qyellow, Qgreen e Qblue and the results of the tests are:

Sample	Qred	Test	Qyellow	Test	Qgreen	Test	Qblue	Test
103995 4sx	0.92	Pass	0.87	Pass	1.09	Pass	1.26	Pass
103995 4dx	0.93	Pass	0.87	Pass	1.09	Pass	1.25	Pass
103995 5sx	0.92	Pass	0.91	Pass	1.07	Pass	1.13	Pass
103995 5dx	0.91	Pass	0.91	Pass	1.08	Pass	1.13	Pass
103995 6sx	0.92	Pass	0.92	Pass	1.07	Pass	1.12	Pass
103995 6dx	0.93	Pass	0.93	Pass	1.06	Pass	1.11	Pass

Spectral transmittance

EN172 - Clause 4.2

Requirements

<u>Note:</u> these specifications are applicable to filters with shade number from 1 to 3,1.

The minimun value of the spectral transmission factor in the wavelength interval from 500 to 650 nm, here named Tmin500_650, shall not be inferior to 0.2 Tv for filters declared appropriate for driving and use on the road.

Outcomes

The minimun value measured of the spectral transmittance from 500 to 650 nm, is:

Certottica Scarl

Rep. no.: 103995

EN 166:2001

Sample	Tmin500_650 (Tv)	Test
103995 4sx	0.70	Pass
103995 4dx	0.72	Pass
103995 5sx	0.75	Pass
103995 5dx	0.80	Pass
103995 6sx	0.81	Pass
103995 6dx	0.80	Pass

On road use: day Yes ; night NO.

Scale Number

EN166 Clause 5

Requirements

The scale numbers are defined by Table 1 of the EN166.

Outcomes

The filter scale number determined is:

Sample	Scale Number
103995 4sx	5 - 3,1
103995 4dx	5 - 3,1
103995 5sx	5 - 3,1
103995 5dx	5 - 3,1
103995 6sx	5 - 3,1
103995 6dx	5 - 3,1

Variations in transmittance (Oculars without filtering action are exempt from this requirement)

Clause 7.1.2.2.3

Oculars without corrective effect

Clause 7.1.2.2.3.1

Requirements

The relative variation of the luminous transmittance around the visual centre(s) P_1 (and P_2) shall not exceed the values stated in Table 4 of the standard.

The relative difference in luminous transmittance, P_3 , between left and right oculars shall not exceed the values stated in Table 4 of the standard or 20% whichever is greater.

Outcomes

Sample	P_1 (%)	Test	P_2 (%)	Test	P_3 (%)	Test
103995 4	6	Pass	5	Pass	8	Pass
103995 5	3	Pass	3	Pass	7	Pass
103995 6	3	Pass	5	Pass	6	Pass

Resistance to ultraviolet radiation (oculars only)

Clause 7.1.5.2

Requirements

The external surface of the filters is exposed to radiation of a 450W Xenon lamp. The exposure time is 50 hours, the distance between filter and lamp is 300 mm, and the test equipment operate at environment temperature of 23 ± 5 Celsius degrees. The absolute value of the relative variation of Tv after radiation shall not be greater than the values specified in Table 6 of EN166. Measurement value of ℓ^* after radiation shall be not higher than 1, 0.75, 0.5 $cd m^{-2} lx^{-1}$ respectivily for welding filters, ocular for protection against high-speed particles, for all other type of oculars.

Outcomes

Measurement values of Tv and ℓ^* after irradiation, the relative variation of Tv and the test results are:

Sample	Tv (%)	$\Delta T v / T v$ (%)	Test	$\ell^* (cd m^{-2} lx^{-1})$	Test
103995 4sx	11.7	7	Pass	0.27	Pass
103995 4dx	10.5	-6	Pass	0.16	Pass
103995 5sx	11.1	2	Pass	0.25	Pass
103995 5dx	11.9	2	Pass	0.19	Pass
103995 6sx	11.0	2	Pass	0.21	Pass
103995 6dx	11.6	1	Pass	0.16	Pass

Mechanical Tests

Protection against high Speed particles at extremes of temperature

Clause 7.3.4

Requirements

If an increased impact resistance is required, the complete eye-protector shall withstand the impact of a 6 mm nominal diameter steel ball of 0.86 g minimum mass striking the ocular at one of the speeds 45, 120 or 190 m/s according to the robustness declared. The impact are carried out after the protector have been conditioned at $+55 \pm 2$ and -5 ± 2 Celsius degrees, in correspondence to the visual centre and of the lateral protection.

Outcomes

The performed tests have given the following results:

Sample	Impact point	Temperature (° C)	Speed (m/s)	Defects	Test
103995 45	right frontal	+55	46.1	—	Pass
103995 46	left frontal	+55	45.3	—	Pass
103995 47	right side	+55	45.5	—	Pass
103995 48	left side	+55	46.0	—	Pass
103995 49	right frontal	+55	45.9	—	Pass
103995 50	left side	+55	45.2	—	Pass
103995 51	right frontal	-5	45.7	—	Pass
103995 52	left frontal	-5	45.7	—	Pass
103995 53	right side	-5	46.3	—	Pass
103995 54	left side	-5	45.8	—	Pass
103995 55	left frontal	-5	45.9	—	Pass
103995 56	right side	-5	45.8		Pass

Optical laboratory manager: Protective laboratory manager: Renato Battistin Michele Molinari

Laboratory Technical Manager: Giorgio Sommariva

Figure 1: Specimen picture.